15 research outputs found

    Tumor biology and cancer therapy – an evolving relationship

    Get PDF
    The aim of palliative chemotherapy is to increase survival whilst maintaining maximum quality of life for the individual concerned. Although we are still continuing to explore the optimum use of traditional chemotherapy agents, the introduction of targeted therapies has significantly broadened the therapeutic options. Interestingly, the results from current trials put the underlying biological concept often into a new, less favorable perspective. Recent data suggested that altered pathways underlie cancer, and not just altered genes. Thus, an effective therapeutic agent will sometimes have to target downstream parts of a signaling pathway or physiological effects rather than individual genes. In addition, over the past few years increasing evidence has suggested that solid tumors represent a very heterogeneous group of cells with different susceptibility to cancer therapy. Thus, since therapeutic concepts and pathophysiological understanding are continuously evolving a combination of current concepts in tumor therapy and tumor biology is needed. This review aims to present current problems of cancer therapy by highlighting exemplary results from recent clinical trials with colorectal and pancreatic cancer patients and to discuss the current understanding of the underlying reasons

    Significantly improved precision of cell migration analysis in time-lapse video microscopy through use of a fully automated tracking system

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cell motility is a critical parameter in many physiological as well as pathophysiological processes. In time-lapse video microscopy, manual cell tracking remains the most common method of analyzing migratory behavior of cell populations. In addition to being labor-intensive, this method is susceptible to user-dependent errors regarding the selection of "representative" subsets of cells and manual determination of precise cell positions.</p> <p>Results</p> <p>We have quantitatively analyzed these error sources, demonstrating that manual cell tracking of pancreatic cancer cells lead to mis-calculation of migration rates of up to 410%. In order to provide for objective measurements of cell migration rates, we have employed multi-target tracking technologies commonly used in radar applications to develop fully automated cell identification and tracking system suitable for high throughput screening of video sequences of unstained living cells.</p> <p>Conclusion</p> <p>We demonstrate that our automatic multi target tracking system identifies cell objects, follows individual cells and computes migration rates with high precision, clearly outperforming manual procedures.</p

    Mechanical compartmentalization of the intestinal organoid enables crypt folding and collective cell migration

    Get PDF
    Intestinal organoids capture essential features of the intestinal epithelium such as crypt folding, cellular compartmentalization and collective movements. Each of these processes and their coordination require patterned forces that are at present unknown. Here we map three-dimensional cellular forces in mouse intestinal organoids grown on soft hydrogels. We show that these organoids exhibit a non-monotonic stress distribution that defines mechanical and functional compartments. The stem cell compartment pushes the extracellular matrix and folds through apical constriction, whereas the transit amplifying zone pulls the extracellular matrix and elongates through basal constriction. The size of the stem cell compartment depends on the extracellular-matrix stiffness and endogenous cellular forces. Computational modelling reveals that crypt shape and force distribution rely on cell surface tensions following cortical actomyosin density. Finally, cells are pulled out of the crypt along a gradient of increasing tension. Our study unveils how patterned forces enable compartmentalization, folding and collective migration in the intestinal epithelium.Peer ReviewedPostprint (author's final draft

    Mechanical compartmentalization of the intestinal organoid enables crypt folding and collective cell migration

    Get PDF
    Intestinal organoids capture essential features of the intestinal epithelium such as crypt folding, cellular compartmentalization and collective movements. Each of these processes and their coordination require patterned forces that are at present unknown. Here we map three-dimensional cellular forces in mouse intestinal organoids grown on soft hydrogels. We show that these organoids exhibit a non-monotonic stress distribution that defines mechanical and functional compartments. The stem cell compartment pushes the extracellular matrix and folds through apical constriction, whereas the transit amplifying zone pulls the extracellular matrix and elongates through basal constriction. The size of the stem cell compartment depends on the extracellular-matrix stiffness and endogenous cellular forces. Computational modelling reveals that crypt shape and force distribution rely on cell surface tensions following cortical actomyosin density. Finally, cells are pulled out of the crypt along a gradient of increasing tension. Our study unveils how patterned forces enable compartmentalization, folding and collective migration in the intestinal epithelium

    IGF1R undergoes active and directed centripetal transport on filopodia upon receptor activation

    No full text
    International audienceFilopodia are thin, actin-based membrane protrusions with roles in sensing external mechanical and chemical cues, such as growth factor gradients in tissues. It was proposed that the chemical sensing role of filopodia is achieved through clearance of activated signaling receptors from filopodia. Type I insulin-like growth factor receptor (IGF1R) is a key regulator of normal development and growth, as well as tumor development and progression. Its biological roles depend on its activation upon IGF1 binding at the cell membrane. IGF1R behavior at the cell membrane and in particular in filopodia, has not been established. We found that IGF1 activation led to a gradual reduction in IGF1R puncta in filopodia, and that this clearance depended on actin, non-muscle myosin II, and IGF1R kinase activity. Using single particle tracking of filopodial IGF1R, we established that ligand-free IGF1R undergoes non-directional unidimensional diffusion along the filopodium. Moreover, after initial diffusion, the ligand-bound IGF1R is actively transported along the filopodium towards the filopodium base, and consequently cleared from the filopodium. Our results show that IGF1R can move directionally on the plasma membrane protrusions, supporting a sensory role for filopodia in interpreting local IGF1 gradients

    Cell Migration in Tissues: Explant Culture and Live Imaging

    No full text
    International audienc

    Cancer cells in the tumor core exhibit spatially coordinated migration patterns

    No full text
    International audienceIn early stages of metastasis, cancer cells exit the primary tumor and enter the vasculature. Although most studies have focused on the tumor invasive front, cancer cells from the tumor core can also potentially metastasize. To address cell motility in the tumor core, we imaged tumor explants from spontaneously-forming tumors in real time using long-term two-photon microscopy. Cancer cells in the tumor core are remarkably dynamic and exhibit correlated migration patterns, giving rise to local "currents" and large-scale tissue dynamics. Although cells exhibit stop-and-start migration with intermittent pauses, pausing does not appear to be required during division. Use of pharmacological inhibitors indicates that migration patterns in tumors are actively driven by the actin cytoskeleton. Under these conditions, we also observed a relationship between migration speed and correlation length, suggesting that cells in tumors are near a jamming transition. Our study provides new insight into the dynamics of cancer cells in the tumor core, opening new avenues of research in understanding the migratory properties of cancer cells and later metastasis

    Active cell migration is critical for steady-state epithelial turnover in the gut

    No full text
    International audienceSteady-state turnover is a hallmark of epithelial tissues throughout adult life. Intestinal epithelial turnover is marked by continuous cell migration, which is assumed to be driven by mitotic pressure from the crypts. However, the balance of forces in renewal remains ill-defined. Combining biophysical modeling and quantitative three-dimensional tissue imaging with genetic and physical manipulations, we revealed the existence of an actin-related protein 2/3 complex-dependent active migratory force, which explains quantitatively the profiles of cell speed, density, and tissue tension along the villi. Cells migrate collectively with minimal rearrangements while displaying dual-apicobasal and front-back-polarity characterized by actin-rich basal protrusions oriented in the direction of migration. We propose that active migration is a critical component of gut epithelial turnover

    Active cell migration is critical for steady-state epithelial turnover in the gut

    No full text
    International audienceSteady-state turnover is a hallmark of epithelial tissues throughout adult life. Intestinal epithelial turnover is marked by continuous cell migration, which is assumed to be driven by mitotic pressure from the crypts. However, the balance of forces in renewal remains ill-defined. Combining biophysical modeling and quantitative three-dimensional tissue imaging with genetic and physical manipulations, we revealed the existence of an actin-related protein 2/3 complex-dependent active migratory force, which explains quantitatively the profiles of cell speed, density, and tissue tension along the villi. Cells migrate collectively with minimal rearrangements while displaying dual-apicobasal and front-back-polarity characterized by actin-rich basal protrusions oriented in the direction of migration. We propose that active migration is a critical component of gut epithelial turnover
    corecore